Toward a Rational Matrix Approximation of the Parameter-Dependent Riccati Equation Solution

نویسندگان

  • J. Guerra
  • M. Yagoubi
  • P. Chevrel
چکیده

This paper considers the problem of solving parameter-dependent Riccati equations. In this paper, a tractable iterative scheme involving mainly additions and multiplications is developed for finding solutions to arbitrary accuracy. It is first presented in the parameter-independent case and then extended to the parametric case. It hinges upon two results: (i) a palindromic quadratic polynomial matrix characterization of the matrix sign and square root functions. (ii) a particular representation of parameterdependent matrices with negative and positive power series with respect to parameters. Several numerical examples are given throughout the paper to prove the validity of the proposed results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving linear and nonlinear optimal control problem using modified adomian decomposition method

First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...

متن کامل

An exponential spline for solving the fractional riccati differential equation

In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...

متن کامل

On the parameter dependence of a class of rational matrix equations occurring in stochastic optimal control

This paper is concerned with rational matrix equations occuring in stochastic control that play an analogous role as the algebraic Riccati equation does in deterministic control. We will therefore sometimes refer to these equations as stochastic (algebraic) Riccati equations. A first rigorous treatment of a stochastic Riccati equation from LQ-control theory seems to have been undertaken by Wonh...

متن کامل

The Non-symmetric Discrete Algebraic Riccati Equation and Canonical Factorization of Rational Matrix Functions on the Unit Circle

Canonical factorization of a rational matrix function on the unit circle is described explicitly in terms of a stabilizing solution of a discrete algebraic Riccati equation using a special state space representation of the symbol. The corresponding Riccati difference equation is also discussed. Mathematics Subject Classification (2010). Primary 47A68, 15A24; Secondary 47B35, 42A58, 39A99.

متن کامل

A new Approximation to the solution of the linear matrix equation AXB = C

It is well-known that the matrix equations play a significant role in several applications in science and engineering. There are various approaches either direct methods or iterative methods to evaluate the solution of these equations. In this research article, the homotopy perturbation method (HPM) will employ to deduce the approximated solution of the linear matrix equation in the form AXB=C....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014